22147208

MATHEMATICS

HIGHER LEVEL
PAPER 3 - CALCULUS
Thursday 15 May 2014 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 16]

Consider the functions f and g given by $f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ and $g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$.
(a) Show that $f^{\prime}(x)=g(x)$ and $g^{\prime}(x)=f(x)$.
(b) Find the first three non-zero terms in the Maclaurin expansion of $f(x)$.
(c) Hence find the value of $\lim _{x \rightarrow 0} \frac{1-f(x)}{x^{2}}$.
(d) Find the value of the improper integral $\int_{0}^{\infty} \frac{g(x)}{[f(x)]^{2}} \mathrm{~d} x$.
2. [Maximum mark: 17]
(a) Consider the functions $f(x)=(\ln x)^{2}, x>1$ and $g(x)=\ln (f(x)), x>1$.
(i) Find $f^{\prime}(x)$.
(ii) Find $g^{\prime}(x)$.
(iii) Hence, show that $g(x)$ is increasing on $] 1, \infty[$.
(b) Consider the differential equation

$$
(\ln x) \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=\frac{2 x-1}{(\ln x)}, x>1
$$

(i) Find the general solution of the differential equation in the form $y=h(x)$.
(ii) Show that the particular solution passing through the point with coordinates $\left(\mathrm{e}, \mathrm{e}^{2}\right)$ is given by $y=\frac{x^{2}-x+\mathrm{e}}{(\ln x)^{2}}$.
(iii) Sketch the graph of your solution for $x>1$, clearly indicating any asymptotes and any maximum or minimum points.
3. [Maximum mark: 12]

Each term of the power series $\frac{1}{1 \times 2}+\frac{1}{4 \times 5} x+\frac{1}{7 \times 8} x^{2}+\frac{1}{10 \times 11} x^{3}+\ldots$ has the form $\frac{1}{b(n) \times c(n)} x^{n}$, where $b(n)$ and $c(n)$ are linear functions of n.
(a) Find the functions $b(n)$ and $c(n)$.
(b) Find the radius of convergence.
(c) Find the interval of convergence.
4. [Maximum mark: 15]

The function f is defined by $f(x)=\left\{\begin{aligned} \mathrm{e}^{-x^{2}}\left(-x^{3}+2 x^{2}+x\right), & x \leq 1 \\ a x+b, & x>1\end{aligned}\right.$, where a and b are constants.
(a) Find the exact values of a and b if f is continuous and differentiable at $x=1$.
(b) (i) Use Rolle's theorem, applied to f, to prove that $2 x^{4}-4 x^{3}-5 x^{2}+4 x+1=0$ has a root in the interval] $-1,1$ [
(ii) Hence prove that $2 x^{4}-4 x^{3}-5 x^{2}+4 x+1=0$ has at least two roots in the interval $]-1,1[$.

