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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 

with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 

found from a graphic display calculator should be supported by suitable working.  For example, if graphs 

are used to find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 

advised to show all working.

1. [Maximum mark:  16]

 Consider the functions f  and g  given by 
e e

( )
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x x

f x
−+

=  and 
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( )
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x x
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= .

 (a) Show that ( ) ( )f x g x′ =  and ( ) ( )g x f x′ = . [2]

	 (b)	 Find	the	first	three	non-zero	terms	in	the	Maclaurin	expansion	of	 ( )f x . [5]

	 (c)	 Hence	find	the	value	of	
20

1 ( )lim
x

f x

x→

−
. [3]

	 (d)	 Find	the	value	of	the	improper	integral	
g x

f x
x

( )

( )[ ]
∞

∫ 20
d . [6]

2. [Maximum mark:  17]

 (a) Consider the functions 2( ) (ln )f x x= , 1x >  and ( )( ) ln ( )g x f x= , 1x > .

  (i) Find ( )f x′ .

  (ii) Find ( )g x′ .

  (iii) Hence, show that ( )g x  is increasing on ] [1, ∞ . [5]

	 (b)	 Consider	the	differential	equation	

d 2 2 1(ln ) , 1
d (ln )
y x

x y x
x x x

−
+ = > .

	 	 (i)	 Find	the	general	solution	of	the	differential	equation	in	the	form	 ( )y h x= .

	 	 (ii)	 Show	that	the	particular	solution	passing	through	the	point	with	coordinates	( )2e, e  

is given by 
2

2

e

(ln )
x x

y
x

− +
= .

	 	 (iii)	 Sketch	the	graph	of	your	solution	for	 1x > ,	clearly	indicating	any	asymptotes	and	
any	maximum	or	minimum	points. [12]
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3. [Maximum mark:  12]

2 3Each	 term	 of	 the	 power	 series	 1 1 1 1

1 2 4 5 7 8 10 11
x x x+ + + +…

× × × ×
	 has	 the	 form 

1

( ) ( )

nx
b n c n×

, where ( )b n  and ( )c n 	are	linear	functions	of		n .

(a) Find the functions ( )b n  and ( )c n . [2]

(b) Find the radius of convergence. [4]

(c)	 Find	the	interval	of	convergence. [6]

4. [Maximum mark:  15]

The function f 	is	defined	by	 ( )2 3 2e 2 , 1
( )

, 1

x x x x x
f x

ax b x

− − + + ≤= 
+ >

, where  a  and  b  are constants.

(a)	 Find	the	exact	values	of		a  and  b  if f 	is	continuous	and	differentiable	at	 1x = . [8]

(b)	 (i)	 Use	 Rolle’s	 theorem,	 applied	 to	 f ,	 to	 prove	 that	 4 3 22 4 5 4 1 0x x x x− − + + =
has	a	root	in	the	interval	 ] [1, 1− .

(ii)	   Hence	prove	that  2x4 − 4x3 − 5x2 + 4x + 1 = 0  has	at	least	two	roots
in	the	interval	 ] [1, 1− . [7]


